
?uk博士的諧振轉(zhuǎn)換器降低了對(duì)電感磁性的要求
發(fā)布時(shí)間:2018-06-12 來源:Michael Dunn 責(zé)任編輯:wenwei
【導(dǎo)讀】?uk博士設(shè)計(jì)的?uk DC-DC轉(zhuǎn)換器以其輸入和輸出紋波電流低而聞名,可作為升降壓轉(zhuǎn)換器使用。本設(shè)計(jì)實(shí)例示出了?uk博士的一個(gè)新轉(zhuǎn)換器架構(gòu),這是一種諧振轉(zhuǎn)換器,即便在相當(dāng)?shù)偷念l率(例如50kHz)下運(yùn)行,仍然可以通過極少量的電感與大電容產(chǎn)生諧振。?uk博士傾向于保持低開關(guān)頻率,但提高頻率卻能以較小的LC值獲得較快的瞬態(tài)響應(yīng)。
很多工程師都知道Slobodan ?uk (發(fā)音類似chook) 博士,他是?uk DC-DC轉(zhuǎn)換器架構(gòu)的設(shè)計(jì)者,這種轉(zhuǎn)換器以輸入和輸出紋波電流低而聞名,也可作為降壓-升壓器使用。
所以最近當(dāng)我注意到?uk博士又發(fā)布了一個(gè)新的轉(zhuǎn)換器架構(gòu)時(shí),我的興趣馬上就被調(diào)起來了。
我一直與這位和善的博士保持著聯(lián)系,但是不太清楚他的新設(shè)計(jì)情況。原型好像已經(jīng)建成,不過細(xì)節(jié)還沒有透露。
該設(shè)計(jì)被認(rèn)為是一種諧振轉(zhuǎn)換器,即便在相當(dāng)?shù)偷念l率(例如50kHz)下運(yùn)行,仍然可以通過極少量的電感(甚至可以只是PCB走線)與大電容諧振。

圖1:?uk博士提出的諧振降壓轉(zhuǎn)換器兼電荷泵。
我發(fā)現(xiàn)現(xiàn)有的電路描述有點(diǎn)難以理解(這無疑說明我的能力還不夠),下面只是我對(duì)該設(shè)計(jì)的一些粗淺領(lǐng)會(huì)。
如果忽略電感器(用短路替換),它基本上就是一個(gè)電荷泵,以2:1的比例運(yùn)行。
設(shè)想電路或多或少處于平衡狀態(tài),開關(guān)如圖1所示:輸入電壓將在C1和C2之間被分壓。當(dāng)開關(guān)翻轉(zhuǎn)時(shí),C1將與C2并聯(lián)(通過S2和D1),傳輸一些電量以補(bǔ)充C2。
通過使用電感器,每個(gè)電荷泵(CP)相位是諧振周期的一半。這樣可以減少標(biāo)準(zhǔn)CP設(shè)計(jì)中出現(xiàn)的電流尖峰,并且可以在不損失效率的情況下實(shí)現(xiàn)輸出電壓的占空比控制(因?yàn)殡姼袝?huì)降低電荷傳輸速率)。我想控制電路也必須采取突發(fā)模式,以便在低負(fù)載時(shí)保持輸出電壓不上升,因?yàn)樵陔姾赊D(zhuǎn)移階段,L2的能量將不斷轉(zhuǎn)移到電容器中。
D1和D2可以是實(shí)際的二極管,如果不介意損耗的話,但在大多數(shù)情況下應(yīng)該是同步開關(guān)。?uk博士指出,在這種情況下替代D2的FET可能需要在開路時(shí)阻斷電流,就像二極管一樣,但是其源極代替D2陰極的N溝道FET(如?uk博士的一個(gè)電路原理圖中所示的)將使一個(gè)體二極管指向錯(cuò)誤的方向。背靠背FET可能是必要的,但是要有正確的控制電路,我認(rèn)為源可能在左邊。
通過這個(gè)設(shè)計(jì),我相信我的分析能力得到了提高,但如果你認(rèn)為我的分析哪里不對(duì),請(qǐng)分享你對(duì)該電路的理解和看法。這是對(duì)我需要提高仿真技能的提醒嗎?我們拭目以待。
?uk博士似乎偏愛保持低開關(guān)頻率,但我認(rèn)為沒有理由不提高頻率,這樣可以較小的LC值獲得較快的瞬態(tài)響應(yīng)(但這樣會(huì)增加開關(guān)損耗)。具體有什么益處呢?讓我們看一些例子:
50kHz: 1000µF, 10nH 500kHz: 22µF, 4.6nH 2MHz: 6.8µF, 1nH
有時(shí),平方根運(yùn)算真是有用的。
那么,你對(duì)這個(gè)設(shè)計(jì)的潛在價(jià)值有何看法
本文轉(zhuǎn)載自電子技術(shù)設(shè)計(jì)。
推薦閱讀:
特別推薦
- 0.1微伏決定生死!儀表放大器如何成為醫(yī)療設(shè)備的“聽診器”
- 0.01%精度風(fēng)暴!儀表放大器如何煉成工業(yè)自動(dòng)化的“神經(jīng)末梢”
- 如何選擇正確的工業(yè)自動(dòng)化應(yīng)用的儀表放大器?
- 從單管到并聯(lián):SiC MOSFET功率擴(kuò)展實(shí)戰(zhàn)指南
- 搶占大灣區(qū)C位!KAIFA GALA 2025AIoT方案征集收官在即,與頭部企業(yè)同臺(tái)競逐
- 破解工業(yè)電池充電器難題:升壓or圖騰柱?SiC PFC拓?fù)溥x擇策略
- μV級(jí)精度保衛(wèi)戰(zhàn):信號(hào)鏈電源噪聲抑制架構(gòu)全解,拒絕LSB丟失!
技術(shù)文章更多>>
- 2025西部電博會(huì)啟幕在即,中文域名“西部電博會(huì).網(wǎng)址”正式上線
- 高壓BMS:電池儲(chǔ)能系統(tǒng)的安全守護(hù)者與壽命延長引擎
- 高精度低噪聲 or 大功率強(qiáng)驅(qū)動(dòng)?儀表放大器與功率放大器選型指南
- 戰(zhàn)略布局再進(jìn)一步:意法半導(dǎo)體2025股東大會(huì)關(guān)鍵決議全票通過
- μV級(jí)精度保衛(wèi)戰(zhàn):信號(hào)鏈電源噪聲抑制架構(gòu)全解,拒絕LSB丟失!
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
電力線通信
電流保險(xiǎn)絲
電流表
電流傳感器
電流互感器
電路保護(hù)
電路圖
電路圖符號(hào)
電路圖知識(shí)
電腦OA
電腦電源
電腦自動(dòng)斷電
電能表接線
電容觸控屏
電容器
電容器單位
電容器公式
電聲器件
電位器
電位器接法
電壓表
電壓傳感器
電壓互感器
電源變壓器
電源風(fēng)扇
電源管理
電源管理IC
電源連接器
電源濾波器
電源模塊