大香伊蕉在人线国产av老女人-午夜欧美理论2019理论-国模无码视频一区二区三区-18成人片黄网站www

你的位置:首頁 > 電源管理 > 正文

反激電源及變壓器設(shè)計(jì)

發(fā)布時(shí)間:2011-09-22 來源:電源網(wǎng)

中心議題:

解決方案:

  • buck-boost電路的工作過程
  • 反激flyback電路如何從buck-boost電路演變而來
  • 反激flyback電路的工作過程仿真


每天都會(huì)有很多工程師在反激設(shè)計(jì)過程遇到問題,本文圖文并茂的講述了反激式拓?fù)浣Y(jié)構(gòu),清楚而透徹,堪稱反激電源及變壓器設(shè)計(jì)寶典,期望給反激電源及變壓器設(shè)計(jì)工程師提供指導(dǎo)。

縱觀電源市場,沒有哪一個(gè)拓?fù)淠芟穹醇る娐纺敲雌占?,可見反激電源在電源設(shè)計(jì)中具有不可替代的地位。說句不算夸張的話,把反激電源設(shè)計(jì)徹底搞透了,哪怕其他的拓?fù)湟稽c(diǎn)不懂,在職場上找個(gè)月薪10K的工作也不是什么難事。

1、反激電路是由buck-boost拓?fù)溲葑兌鴣恚确治鲆幌耣uck-boost電路的工作過程。
       buck-boost電路的工作過程1

       buck-boost電路的工作過程2

工作時(shí)序說明:

t0時(shí)刻,Q1開通,那么D1承受反向電壓截止,電感電流在輸入電壓作用下線性上升。

t1時(shí)刻,Q1關(guān)斷,由于電感電流不能突變,所以,電感電流通過D1,向C1充電。并在C1兩端電壓作用下,電流下降。

t2時(shí)刻,Q1開通,開始一個(gè)新的周期。

從上面的波形圖中,我們可以看到,在整個(gè)工作周期中,電感L1的電流都沒有到零。所以,這個(gè)工作模式是電流連續(xù)的CCM模式,又叫做能量不完全轉(zhuǎn)移模式。因?yàn)殡姼兄械膬δ軟]有完全釋放。

從工作過程我們也可以知道,這個(gè)拓?fù)淠芰總鬟f的方式是,在MOS管開通時(shí),向電感中儲存能量,MOS管關(guān)斷時(shí),電感向輸出電容釋放能量。MOS管不直接向負(fù)載傳遞能量。整個(gè)能量傳遞過程是先儲存再釋放的過程。整個(gè)電路的輸出能力,取決于電感的儲存能力。我們還要注意到,根據(jù)電流流動(dòng)的方向,可以判斷出,在輸入輸出共地的情況下,輸出的電壓是負(fù)電壓。

MOS管開通時(shí),電感L1承受的是輸入電壓,MOS關(guān)斷時(shí),電感L1承受的是輸出電壓。那么,在穩(wěn)態(tài)時(shí),電路要保證電感不進(jìn)入飽和,必定要保證電感承受的正向和反向的伏秒積的平衡。那么:

Vin×(t1-t0)=Vout×(t2-t1),假如整個(gè)工作周期為T,占空比為D,那么就是:Vin×D=Vout×(1-D)[page]
那么輸出電壓和占空比的關(guān)系就是:Vout=Vin×D/(1-D)

同時(shí),我們注意看MOS管和二極管D1的電壓應(yīng)力,都是Vin+Vout

另外,因?yàn)槭荂CM模式,所以從電流波形上可以看出來,二極管存在反向恢復(fù)問題。MOS開通時(shí)有電流尖峰。

上面的工作模式是電流連續(xù)的CCM模式。在原圖的基礎(chǔ)上,把電感量降低為80uH,其他參數(shù)不變,仿真看穩(wěn)態(tài)的波形如下:
                              電感量降低為80uH仿真穩(wěn)態(tài)的波形

t0時(shí)刻,Q1開通,那么D1承受反向電壓截止,電感電流在輸入電壓作用下從0開始線性上升。

t1時(shí)刻,Q1關(guān)斷,由于電感電流不能突變,所以,電感電流通過D1,向C1充電。并在C1兩端電壓作用下,電流下降。

t2時(shí)刻,電感電流和二極管電流降到零。D1截止,MOS的結(jié)電容和電感開始發(fā)生諧振。所以可以看見MOS的Vds電壓出現(xiàn)周期性的振蕩。

t3時(shí)刻,Q1再次開通,進(jìn)入一個(gè)新的周期。

在這個(gè)工作模式中,因?yàn)殡姼须娏鲿?huì)到零,所以是電流不連續(xù)的DCM模式。有叫做能量完全轉(zhuǎn)移模式,因?yàn)殡姼兄袃Υ娴哪芰客耆D(zhuǎn)移到了輸出端。而二極管因?yàn)橐补ぷ髟贒CM狀態(tài),所以沒有反向恢復(fù)的問題。 但是我們應(yīng)該注意到,DCM模式的二極管、電感和MOS漏極的峰值電流是大于上面的CCM模式的。

需要注意的是在DCM下的伏秒積的平衡是:

Vin×(t1-t0)=Vout(t2-t1)

只是個(gè)波形的正反問題。就好象示波器的探頭和夾子如果反過來,那么波形就倒過來。

你注意看圖的右邊,看波形具體的定義是什么。有的波形是兩個(gè)點(diǎn)相減出來的。

看波形圖也要配合這原理圖來看的。

當(dāng)MOS開通的時(shí)候,二極管D1承受著反壓,是一個(gè)負(fù)的電壓。MOS關(guān)斷的時(shí)候,二極管導(dǎo)通,正向壓降很低二極管的反向恢復(fù),和其工作時(shí)PN結(jié)的載流子的運(yùn)動(dòng)有關(guān)系。DCM時(shí),因?yàn)槎O管已經(jīng)沒有電流流過了,內(nèi)部載流子已經(jīng)完成了復(fù)合過程。所以不存在反向回復(fù)問題。會(huì)有一點(diǎn)點(diǎn)反向電流,不過那是結(jié)電容造成的。

在CCM和DCM模式有個(gè)過渡的狀態(tài),叫CRM,就是臨界模式。這個(gè)模式就是電感電流剛好降到零的時(shí)候,MOS開通。這個(gè)方式就是DCM向CCM過渡的臨界模式。CCM在輕載的時(shí)候,會(huì)進(jìn)入DCM模式的。CRM模式可以避免二極管的反向恢復(fù)問題。同時(shí)也能避免深度DCM時(shí),電流峰值很大的缺點(diǎn)。要保持電路一直工作在CRM模式,需要用變頻的控制方式。

我還注意到,在DCM模式,電感電流降到零以后,電感會(huì)和MOS的結(jié)電容諧振,給MOS結(jié)電容放電。那么,是不是可以有種工作方式是當(dāng)MOS結(jié)電容放電到最低點(diǎn)的時(shí)候,MOS開通進(jìn)入下一個(gè)周期,這樣就可以降低MOS開通的損耗了。答案是肯定的。這種方式就叫做準(zhǔn)諧振,QR方式。也是需要變頻控制的。不管是PWM模式,CRM模式,QR模式,現(xiàn)在都有豐富的控制IC可以提供用來設(shè)計(jì)。

2、那么我們常說,反激flyback電路是從buck-boost電路演變而來,究竟是如何從buck-boost拓?fù)溲葑兂龇醇lyback拓?fù)涞哪兀?br />
請看下面的圖:
                           基本的buck-boost拓?fù)浣Y(jié)構(gòu)[page]
這是基本的buck-boost拓?fù)浣Y(jié)構(gòu)。下面我們把MOS管和二極管的位置改變一下,都挪到下面來。變成如下的電路結(jié)構(gòu)。這個(gè)電路和上面的電路是完全等效的。
                          把MOS管和二極管的位置改變圖

接下來,我們把這個(gè)電路,從A、B兩點(diǎn)斷開,然后在斷開的地方接入一個(gè)變壓器,得到下圖:
                         反激電源及變壓器設(shè)計(jì)

 為什么變壓器要接在這個(gè)地方?因?yàn)閎uck-boost電路中,電感上承受的雙向伏秒積是相等的,不會(huì)導(dǎo)致變壓器累積偏磁。我們注意到,變壓器的初級和基本拓?fù)渲械碾姼惺遣⒙?lián)關(guān)系,那么可以將變壓器的勵(lì)磁電感和這個(gè)電感合二為一。另外,把變壓器次級輸出調(diào)整一下,以適應(yīng)閱讀習(xí)慣。得到下圖:
                   反激電源及變壓器設(shè)計(jì)

這就是最典型的隔離flyback電路了。由于變壓器的工作過程是先儲存能量后釋放,而不是僅僅擔(dān)負(fù)傳遞能量的角色。故而這個(gè)變壓器的本質(zhì)是個(gè)耦合電感。采用這個(gè)耦合電感來傳遞能量,不僅可以實(shí)現(xiàn)輸入與輸出的隔離,同時(shí)也實(shí)現(xiàn)了電壓的變換,而不是僅僅靠占空比來調(diào)節(jié)電壓。[page]

由于此耦合電感并非理想器件,所以存在漏感,而實(shí)際線路中也會(huì)存在雜散電感。當(dāng)MOS關(guān)斷時(shí),漏感和雜散電感中的能量會(huì)在MOS的漏極產(chǎn)生很高的電壓尖峰,從而會(huì)導(dǎo)致器件的損壞。故而,我們必須對漏感能量進(jìn)行處理,最常見的就是增加一個(gè)RCD吸收電路。用C來暫存漏感能量,用R來耗散之。
                      反激電源及變壓器設(shè)計(jì)

下面先讓我們仿真一下反激flyback電路的工作過程。

在使用耦合電感仿真的時(shí)候,我們需要知道saber中,耦合電感怎么用。簡單的辦法,就是選擇一個(gè)理想的線性變壓器,然后設(shè)置其電感量來仿真。還有一個(gè)辦法,就是利用耦合電感K這個(gè)模型來仿真。下圖是我們用來仿真的電路圖,為了讓大家能看到元件參數(shù)的設(shè)置,我把所有元件的關(guān)鍵參數(shù)都顯示出來了。還有,因?yàn)榉抡娴男枰?,我把輸入和輸出共地,?shí)際電路當(dāng)然是隔離的。
                     反激電源及變壓器設(shè)計(jì)

細(xì)心的朋友可能會(huì)注意到,變壓器的初級電感量是202uH,參與耦合的卻只有200uH,那么有2uH是漏感。次級是50uH,沒有漏感。變壓器的電感比是200:50,那么意味著變壓器的匝比NP/NS=2:1設(shè)定瞬態(tài)掃描,時(shí)間10ms,步長10ns,看看穩(wěn)態(tài)時(shí)的波形吧:
                      反激電源及變壓器設(shè)計(jì)

下面先簡單敘述其工作原理:

t0時(shí)刻,MOS開通。變壓器初級電流在輸入電壓的作用下,線性上升,上升速率為Vin/l1。變壓器初級電壓感應(yīng)到次級,整流二極管反向截止。二極管承受反壓為Vin/(NP/NS)+Vout。

t1時(shí)刻,MOS關(guān)斷。 變壓器初級電流被強(qiáng)制關(guān)斷。我們知道電感電流是不能突變的,而現(xiàn)在MOS要強(qiáng)制關(guān)斷初級電流,那么初級電感就會(huì)在MOS關(guān)斷過程中,在初級側(cè)產(chǎn)生一個(gè)感應(yīng)電動(dòng)勢。根據(jù)電磁感應(yīng)定律,我們知道,這個(gè)感應(yīng)電動(dòng)勢在原理圖中是下正上負(fù)的。這個(gè)感應(yīng)電動(dòng)勢通過變壓器的繞組耦合到次級,由于次級的同名端和初級是反的。所以次級的感應(yīng)電動(dòng)勢是上正下負(fù)。當(dāng)次級的感應(yīng)電動(dòng)勢達(dá)到輸出電壓時(shí),次級整流二極管導(dǎo)通。初級電感在MOS開通時(shí)儲存的能量,通過磁芯耦合到次級電感,然后通過次級線圈釋放到次級輸出電容中。在向輸出電容中轉(zhuǎn)移能量的過程中,由于次級輸出電容容量很大,電壓基本不變,所以次級電壓被箝位在輸出電壓Vout,那么因?yàn)榇判纠@組電壓是按匝數(shù)的比例關(guān)系,所以此時(shí)初級側(cè)的電壓也被箝位在Vout/(NS/NP),這里為了簡化分析,我們忽略了二極管的正向?qū)▔航怠page]
現(xiàn)在我們引入一個(gè)非常重要的概念,反射電壓Vf。反射電壓Vf就是次級繞組在向次級整流后的輸出電容轉(zhuǎn)移能量時(shí),把次級輸出電壓按照初次級繞組的匝數(shù)比關(guān)系反射到初級側(cè)繞組的電壓,數(shù)值為:Vf=(Vout+Vd)/(NS/NP),式中,Vd是二極管的正向?qū)▔航怠T诒纠?,Vout約為20V,Vd約為1V,NP/NS=2,那么反射電壓約為42V。從波形圖上可以證實(shí)這一點(diǎn)。那么我們從原理圖上可以知道,此時(shí)MOS的承受的電壓為Vin+Vf。

也有朋友注意到了,在MOS關(guān)斷的時(shí)候,Vds的波形顯示,MOS上的電壓遠(yuǎn)超過Vin+Vf!這是怎么回事呢?這是因?yàn)?,我們的這個(gè)例子中,變壓器的初級有漏感。漏感的能量是不會(huì)通過磁芯耦合到次級的。那么MOS關(guān)斷過程中,漏感電流也是不能突變的。漏感的電流變化也會(huì)產(chǎn)生感應(yīng)電動(dòng)勢,這個(gè)感應(yīng)電動(dòng)勢因?yàn)闊o法被次級耦合而箝位,電壓會(huì)沖的很高。那么為了避免MOS被電壓擊穿而損壞,所以我們在初級側(cè)加了一個(gè)RCD吸收緩沖電路,把漏感能量先儲存在電容里,然后通過R消耗掉。當(dāng)然,這個(gè)R不僅消耗漏感能量。因?yàn)樵贛OS關(guān)斷時(shí),所有繞組都共享磁芯中儲存的能量。其實(shí),留意看看,初級配上RCD吸收電路,和次級整流濾波后帶一個(gè)電阻負(fù)載,電路結(jié)構(gòu)完全是相同的。故而初級側(cè)這時(shí)候也像一個(gè)輸出繞組似的,只不過輸出的電壓是Vf,那么Vf也會(huì)在RCD吸收回路的R上產(chǎn)生功率。因此,初級側(cè)的RCD吸收回路的R不要取值太小,以避免Vf在其上消耗過多的能量而降低效率。t3時(shí)刻,MOS再次開通,開始下一個(gè)周期。那么現(xiàn)在有一個(gè)問題。在一個(gè)工組周期中,我們看到,初級電感電流隨著MOS的關(guān)斷是被強(qiáng)制關(guān)斷的。在MOS關(guān)斷期間,初級電感電流為0,電流是不連續(xù)的。那么,是不是我們的這個(gè)電路是工作在 DCM狀態(tài)的呢?

在flyback電路中,CCM和DCM的判斷,不是按照初級電流是否連續(xù)來判斷的。而是根據(jù)初、次級的電流合成來判斷的。只要初、次級電流不同是為零,就是CCM模式。而如果存在初、次級電流同時(shí)為零的狀態(tài),就是DCM模式。介于二者之間的就是CRM過渡模式。

所以根據(jù)這個(gè)我們從波形圖中可以看到,當(dāng)MOS開通時(shí),次級電流還沒有降到零。而MOS開通時(shí),初級電流并不是從零開始上升,故而,這個(gè)例子中的電路是工作在CCM模式的。我們說過,CCM模式是能量不完全轉(zhuǎn)移的。也就是說,儲存在磁芯中的能量是沒有完全釋放的。但進(jìn)入穩(wěn)態(tài)后,每周期MOS開通時(shí)新增儲存能量是完全釋放到次級的。否則磁芯會(huì)飽和的。

在上面的電路中,如果我們增大輸出負(fù)載的阻值,降低輸出電流,可以是電路工作模式進(jìn)入到DCM狀態(tài)。為了使輸出電壓保持不變,MOS的驅(qū)動(dòng)占空比要降低一點(diǎn)。其他參數(shù)保持不變。
                       反激電源及變壓器設(shè)計(jì)

同樣,設(shè)定瞬態(tài)掃描,時(shí)間10ms,步長10ns,看看穩(wěn)態(tài)時(shí)的波形吧:
                       反激電源及變壓器設(shè)計(jì)
t0時(shí)刻,MOS開通,初級電流線性上升。

t1時(shí)刻,MOS關(guān)斷,初級感應(yīng)電動(dòng)勢耦合到次級向輸出電容轉(zhuǎn)移能量。漏感在MOS上產(chǎn)生電壓尖峰。輸出電壓通過繞組耦合,按照匝比關(guān)系反射到初級。這些和CCM模式時(shí)是一樣的。這一狀態(tài)維持到t2時(shí)刻結(jié)束。

t2時(shí)刻,次級二極管電流,也就是次級電感電流降到了零。這意味著磁芯中的能量已經(jīng)完全釋放了。那么因?yàn)槎茈娏鹘档搅肆?,二極管也就自動(dòng)截止了,次級相當(dāng)于開路狀態(tài),輸出電壓不再反射回初級了。由于此時(shí)MOS的Vds電壓高于輸入電壓,所以在電壓差的作用下,MOS的結(jié)電容和初級電感發(fā)生諧振。諧振電流給MOS 的結(jié)電容放電。Vds電壓開始下降,經(jīng)過1/4之一個(gè)諧振周期后又開始上升。由于RCD箝位電路的存在,這個(gè)振蕩是個(gè)阻尼振蕩,幅度越來越小。

t2到t3時(shí)刻,變壓器是不向輸出電容輸送能量的。輸出完全靠輸出的儲能電容來維持。
t3時(shí)刻,MOS再次開通,由于這之前磁芯能量已經(jīng)完全釋放,電感電流為零。所以初級的電流是從零開始上升的。

從CCM模式和DCM模式的波形中我們可以看到二者波形的區(qū)別:

1,變壓器初級電流,CCM模式是梯形波,而DCM模式是三角波。

2,次級整流管電流波形,CCM模式是梯形波,DCM模式是三角波。

3,MOS的Vds波形,CCM模式,在下一個(gè)周期開通前,Vds一直維持在Vin+Vf的平臺上。而DCM模式,在下一個(gè)周期開通前,Vds會(huì)從 Vin+Vf這個(gè)平臺降下來發(fā)生阻尼振蕩。

所以,只要有示波器,我們就可以很容易從波形上看出來反激電源是工作在 CCM還是DCM狀態(tài)。

另外,從DCM的工作波形上,我們也可以得到一些有意義的提示。

例如,假如我們控制使次級繞組電流降到零的瞬間,開通MOS進(jìn)入下一個(gè)周期。這樣可以有效利用占空比,降低初級電流峰值和RMS值。

這種工作方式就是叫做CRM方式??梢杂米冾l帶電流過零檢測的IC來控制。例如L6561MC34262等。

還有一種方式,就是次級電流過零后,MOS結(jié)電容和初級電感諧振放電,我們假如讓MOS在Vds降到最低點(diǎn)的時(shí)候開通,那么可以有效降低容性開通造成的能量損失。這種就是前面提到過的QR準(zhǔn)諧振模式。這樣的控制IC現(xiàn)在也有很多。

要采購變壓器么,點(diǎn)這里了解一下價(jià)格!
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
壓控振蕩器 壓力傳感器 壓力開關(guān) 壓敏電阻 揚(yáng)聲器 遙控開關(guān) 醫(yī)療電子 醫(yī)用成像 移動(dòng)電源 音頻IC 音頻SoC 音頻變壓器 引線電感 語音控制 元件符號 元器件選型 云電視 云計(jì)算 云母電容 真空三極管 振蕩器 振蕩線圈 振動(dòng)器 振動(dòng)設(shè)備 震動(dòng)馬達(dá) 整流變壓器 整流二極管 整流濾波 直流電機(jī) 智能抄表
?

關(guān)閉

?

關(guān)閉