-
基于分立元件的PWM Buck三電平變換器
本文是對PWM三電平變換器的控制電路進行分析和設計,介紹了Buck三電平變換器主電路拓撲。文中采用比較器、運算放大器和RS觸發(fā)器等分立元件實現PWM Buck三電平變換器的控制。該方法控制電路簡單,易于實現,成本低,可以直接推廣到其它非隔離三電平變換器的控制中。
2012-01-19
-
TDA7498E:ST全新放大器為音頻系統(tǒng)實現卓越音質和纖薄外觀設計
近日,橫跨多重電子應用領域、全球領先的半導體供應商及音頻IC供應商意法半導體推出一款同類產品中功率密度最高的高性能模擬D類音頻放大器TDA7498E。新產品讓設備廠商能夠開發(fā)外觀纖薄且擁有卓越音質的下一代家庭音響、專業(yè)級音響系統(tǒng)以及主動式揚聲器應用。
2012-01-18
-
軟啟動電路設計及其在藍牙功放中的應用
針對藍牙功率放大器的功率控制電路在啟動時產生的浪涌電流現象,本文分別從浪涌電流的峰值和上升的斜率兩方面著手,設計出了一個新穎的浪涌電流控制電路,具有結構簡單等優(yōu)點;同時分別分析了浪涌電流斜率和峰值的控制的原理,最終實現了對浪涌電流的控制,成功實現了軟啟動。
2012-01-18
-
電流檢測方法研究
大多數模擬集成電路(比較器、運算放大器、儀表放大器、基準、濾波器等)都是用來處理電壓信號的。至于處理電流信號的器件,設計師們的選擇卻少得可憐,而且還要面對多得多的難題。
2012-01-17
-
射頻功率管的輸入輸出阻抗測量方法
有時候為了降低產品的功耗,必須設計出匹配良好和高效率的射頻功率放大器,這時就有必要測量功率管在特定工作條件下的輸入輸出阻抗。在測定的過程中,首選的儀器是昂貴的網絡分析儀,但是在不具備網絡分析儀的情況下,可以尋求用普通的儀器(如示波器、阻抗測試儀等)進行測量。下面介紹一種用普通測量儀器測量射頻功率管在實際工作條件下的輸入輸出阻抗的方法。
2012-01-06
-
PWM放大器的中頻電源研究
隨著電力電子技術及器件的發(fā)展;特別是功率MOSFET、IGBT、MCT、IPM以及單片集成脈寬調制功率放大器等新型器件的出現;使電壓型SPWM逆變器得到廣泛的關注、開發(fā)和應用。
2012-01-04
-
提高RF微波測試正確性的六大秘訣
盡管大部分的RF 和微波測試系統(tǒng)所要量測的對象只有區(qū)區(qū)幾種廣泛的類別——放大器、發(fā)射器、接收器等,但每一套個別的系統(tǒng)卻會面臨一些不同的環(huán)境條件、要求和挑戰(zhàn)。在定義任何的RF和微波測試系統(tǒng)時,有三項共通的因素會相互影響:效能、速度與穩(wěn)定,能否在這三項因素間做最佳的取舍將關系著量測結果是否能達到要求的正確性水準。本文建議了一個考量這些取捨因素的架構,并且提供六大秘訣,教您如何克服RF 信號路徑上常會碰到的問題。
2012-01-04
-
高側電流傳感器AD8205及其應用
AD8205是美國模擬器件公司推出的一種單電源高性能差分放大器,典型單電源供電電壓為5V,其共模電壓輸入范圍為-2~65V,可以耐受-5~+70V的輸入共模電壓,適用于高共模電壓情況下檢測小差分電壓的工業(yè)設備中。
2011-12-31
-
第五講:高能效智能電表電源方案
從智能電表的組成來看,主要包括通信、電源及電源管理、計量及存儲等功能模塊。安森美半導體提供應用于智能電表各個功能模塊的豐富解決方案,如 PLC 調制解調器和線路驅動器、放大器、穩(wěn)壓、監(jiān)控、電壓保護、溫度傳感器、實時時鐘、存儲器、LCD 背光、I/O 接口、智能卡接口和 I/O 擴展器等。
2011-12-31
-
運算放大器性能參數的影響因素
本文闡述了直流偏置電源對敏感模擬應用中所使用運算放大器(op amp)產生的影響,此外還涉及了電源排序及直流電源對輸入失調電壓的影響。另外,本文還介紹了一種通過線性穩(wěn)壓器(一般不具有追蹤能力)輕松實施追蹤分離電源的方法,以幫助最小化直流偏置電源帶來的一些不利影響。
2011-12-30
-
射頻功率測量電路設計
近年來,隨著3G技術的快速發(fā)展,在進行通信系統(tǒng)設計時,射頻功率的控制和測量十分重要。本文以美國ADI公司的AD8318單片射頻功率測量芯片為核心,設計了基于對數放大器檢測方法的射頻功率測量電路,該方法具有動態(tài)范圍大,頻率范圍廣,精度高和溫度穩(wěn)定性好的特點。
2011-12-28
-
基于單片機的串聯鋰離子電池組監(jiān)測系統(tǒng)設計
介紹一個以51系列單片機為主控單元的串聯鋰離子電池組監(jiān)測系統(tǒng)。采用差分放大器和模擬開關輪流檢測單體電池電壓,利用單片機的IO接口和DS18B20實現單總線多點溫度檢測。系統(tǒng)簡單經濟,經過試驗,能可靠、準確地對串聯鋰離子電池組進行監(jiān)測。
2011-12-23
- 0.1微伏決定生死!儀表放大器如何成為醫(yī)療設備的“聽診器”
- 0.01%精度風暴!儀表放大器如何煉成工業(yè)自動化的“神經末梢”
- 如何選擇正確的工業(yè)自動化應用的儀表放大器?
- 從單管到并聯:SiC MOSFET功率擴展實戰(zhàn)指南
- 搶占大灣區(qū)C位!KAIFA GALA 2025AIoT方案征集收官在即,與頭部企業(yè)同臺競逐
- 破解工業(yè)電池充電器難題:升壓or圖騰柱?SiC PFC拓撲選擇策略
- μV級精度保衛(wèi)戰(zhàn):信號鏈電源噪聲抑制架構全解,拒絕LSB丟失!
- IOTE 2025上海物聯網展圓滿收官!AIoT+5G生態(tài)引爆智慧未來
- 2025西部電博會啟幕在即,中文域名“西部電博會.網址”正式上線
- 高壓BMS:電池儲能系統(tǒng)的安全守護者與壽命延長引擎
- 高精度低噪聲 or 大功率強驅動?儀表放大器與功率放大器選型指南
- 戰(zhàn)略布局再進一步:意法半導體2025股東大會關鍵決議全票通過
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術展望
- 數字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創(chuàng)新應用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall